Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38564010

RESUMEN

PURPOSE: Cochlear implantation is a prevalent remedy for severe-to-profound hearing loss. Optimising outcomes and hearing preservation, and minimising insertion trauma, require precise electrode placement. Objective monitoring during the insertion process can provide valuable insights and enhance surgical precision. This study assesses the feasibility and performance of an impedance-based method for monitoring electrode insertion, compared to the surgeon's feedback. METHODS: The study utilised the Insertion Monitoring Tool (IMT) research software, allowing for real-time measurement of impedance and evoked compound action potential (eCAP) during electrode insertion in 20 patient implantations. This enabled an impedance-based method to continuously assess the status of each electrode during the insertion process. The feasibility and performance was evaluated and compared to the surgeon's feedback approach. eCAP measurements focused merely on feasibility without searching specific responses. RESULTS: The IMT demonstrated feasibility in measuring real-time impedances and eCAP during the insertion of the electrode array. The impedance-based method exhibited potential for accurately monitoring the insertion depth with a high success rate. However, further development is needed to improve the number of usable contacts. CONCLUSIONS: Objective monitoring with the impedance-based method shows promise as a valuable tool to enhance the precision of cochlear implant electrode insertion respecting insertion distance estimation. The IMT research software proved feasible in recording real-time impedances and eCAP during electrode insertion. While this impedance-based method exhibits high success rates, further improvements are required to optimise the number of usable contacts. This study highlights the potential of objective monitoring techniques to enhance cochlear implantation outcomes.

2.
Front Neurol ; 13: 804507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386404

RESUMEN

Image-guided and robot-assisted surgeries have found their applications in skullbase surgery. Technological improvements in terms of accuracy also opened new opportunities for robotically-assisted cochlear implantation surgery (RACIS). The HEARO® robotic system is an otological next-generation surgical robot to assist the surgeon. It first provides software-defined spatial boundaries for orientation and reference information to anatomical structures during otological and neurosurgical procedures. Second, it executes a preplanned drill trajectory through the temporal bone. Here, we report how safe the HEARO procedure can provide an autonomous minimally invasive inner ear access and the efficiency of this access to subsequently insert the electrode array during cochlear implantation. In 22 out of 25 included patients, the surgeon was able to complete the HEARO® procedure. The dedicated planning software (OTOPLAN®) allowed the surgeon to reconstruct a three-dimensional representation of all the relevant anatomical structures, designate the target on the cochlea, i.e., the round window, and plan the safest trajectory to reach it. This trajectory accommodated the safety distance to the critical structures while minimizing the insertion angles. A minimal distance of 0.4 and 0.3 mm was planned to facial nerve and chorda tympani, respectively. Intraoperative cone-beam CT supported safe passage for the 22 HEARO® procedures. The intraoperative accuracy analysis reported the following mean errors: 0.182 mm to target, 0.117 mm to facial nerve, and 0.107 mm to chorda tympani. This study demonstrates that microsurgical robotic technology can be used in different anatomical variations, even including a case of inner ear anomalies, with the geometrically correct keyhole to access to the inner ear. Future perspectives in RACIS may focus on improving intraoperative imaging, automated segmentation and trajectory, robotic insertion with controlled speed, and haptic feedback. This study [Experimental Antwerp robotic research otological surgery (EAR2OS) and Antwerp Robotic cochlear implantation (25 refers to 25 cases) (ARCI25)] was registered at clinicalTrials.gov under identifier NCT03746613 and NCT04102215. Clinical Trial Registration: https://www.clinicaltrials.gov, Identifier: NCT04102215.

3.
Acta Otolaryngol ; 136(6): 556-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26981711

RESUMEN

Conclusion Bonebridge (BB) and Sophono (SP) devices improved hearing; with the BB implant showing a better performance at medium and high frequencies. Furthermore, the BB, as an active implant, showed higher functional gain and increased time of use, when compared to the SP, a passive system. Objectives This study aims to compare surgical and audiological outcomes of SP and BB devices in order to assess and further differentiate the indication criteria. Methods Fourteen patients with conductive and mixed hearing loss were evaluated pre- and post-operatively (BB or SP) (period 2013-2014). Age, gender, surgical history, cause and type of hearing loss, implant use per day, levels of bone and air conduction, and functional gain were recorded. Data was analysed by Wilcoxon singed-rank and Wilcoxon rank-sum tests. Results Fourteen patients (BB; n = 10 and SP; n = 4) with an average age = 25.42 years (CI95 = 12.41-38.43) were evaluated. The gender relation was equal (1:1), with pre-implantation osseous thresholds of 20.42 dB (CI95 = 11.15-29.69), and pre-implantation aerial thresholds of 70.83 dB (CI95 = 62.52-79.14). The SP wearing time was significantly lower than that of the BB (SP = 7-10 h/day, BB = 8-12 h/day; p = 0.0323). The functional gain did not differ significantly between the two devices (BB = 40.00 ± 13.19 dB, SP = 34.06 ± 15.63 dB; p = 0.3434), but a significant improvement from pre- to post-implantation was observed (p < 0.05). BB and SP decreased auditory thresholds at 1 and 2 kHz (< 0.01), respectively. The BB even significantly decreased thresholds at 0.5 kHz (p = 0.0140) and 4 kHz (p < 0.0001). No relevant surgical complications were found.


Asunto(s)
Conducción Ósea , Audífonos , Procedimientos Quirúrgicos Otológicos , Implantación de Prótesis , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...